CITY OF MISSISSAUGA SPECIFICATIONS FOR THE DECOMMISSIONING OF AN ABANDONED WELL AND CISTERN AT THE ADAMSON ESTATE PROPERTY

850 Enola Avenue Mississauga, ON L5G 4B2

TABLE OF CONTENTS

Page

9.1

Tab	le Of Contents	l
1.	Introduction	<u>)</u>
2.	Project Information)
3.	Applicable Regulations and Standards	3
4.	Personnel Qualifications and Responsibilities	3
5.	Submittals	ł
6.	Site Preparation	ł
7.	Required Materials	5
8.	Abandonment Procedure	5
	8.1 Water Well	5
	8.1.1 Pre-Abandonment Activities:6	5
	8.2 Cistern	3
9.	Quality Control	3
10.	Waste Disposal)
11.	Site Restoration)
12.	Documentation And Reporting)
13.	Health And Safety10)
14.	References1	i

LIST OF FIGURES

3

Figure 2 Site Layout Plan

LIST OF APPENDICES

- Appendix A Site Photographs
- Appendix B Irrigation Layout Plan
- Appendix C Water Sample Analytical Results

1. INTRODUCTION

The purpose of this project is to decommission an abandoned 100-year-old (approximate) well and cistern at the Adamson Estate property, which is located at 850 Enola Avenue, Mississauga, Ontario (ON), the "Site", with the objective of decommissioning the two subsurface structures to ensure the health and safety of the general public for use of the Site as a public park area. Refer to Figure 1 for the Site's geographical location and Appendix A for Site photographs.

The Adamson Estate property is a historic property set on expansive grounds bordering Lake Ontario. The estate lands comprise a 13.2 acre parcel. The main structure comprises a two-storey manor house. Surrounding the house are extensive landscaped grounds, which include formal gardens, lawns, mature trees, and pathways. The structures of the original estate, with its house, barn outbuildings and grounds are a significant waterfront cultural landscape and the Site was recognised for its heritage value by the City of Mississauga By-law 461-78, on January 5, 1993.

This specification defines the procedures and requirements for the proper abandonment (decommissioning) of the historic well and cistern at the Site. Refer to Figure 2 for the well and cistern location and the general Site layout. The purpose is to ensure that the well is abandoned in strict compliance with the Ontario Water Resources Act, R.R.O. 1990, Regulation 903 (WELLS), particularly Sections 21 and 21.1, thereby protecting groundwater resources and public safety. This specification is intended for use by qualified and licensed Ontario Well Contractors and Well Technicians.

The purpose of this specification is to provide clear, actionable instructions for qualified well contractors and technicians to perform the work safely and correctly, preventing movement of water, contaminants, or other material between subsurface formations or between a subsurface formation and the ground surface *via* the well bore or annular space. Note, there is no "National Master Specification" (NMS) section solely dedicated to the decommissioning of a water well or an underground water cistern. Relevant information and requirements can be found within other regulatory documents, particularly at the provincial level.

- > Provincial Regulations (Ontario):
 - Wells Regulation, Ontario Regulation 903: Although primarily focused on wells, this regulation highlights the importance of preventing contamination and ensuring the safe abandonment of underground structures that could pose a risk to groundwater or cause physical hazards. The principles of plugging and sealing to prevent pathways for contaminants is relevant to the water cistern, and as such, select procedures for decommissioning of the water well have been applied to the cistern.

2. PROJECT INFORMATION

Project Name: Adam Estate Property - Abandon Well and Cistern

Site Location: 850 Enola Avenue, Mississauga, Ontario

Specific Well ID: N/A

Estimated Well Depth: 7.5 metres below ground surface (mbgs)

Estimated Well Diameter(s): 0.8 metres (m)

Observed Well Construction: Brick lined

Estimated Cistern Depth(s): 1.34 mbgs

Estimated Cistern Diameter(s): 1.33 m

Observed Cistern Construction: Brick lined

Specific Site Hazards: Underground services, nearby structures, softscape lands, nearby trees, limited access.

Responsible Professional Engineer/Geoscientist (P.Eng./P.Geo.): Keystone Environmental Ltd.

Engaged Well Contractor Name and License Number: [TBD]

3. APPLICABLE REGULATIONS AND STANDARDS

The work shall be performed in accordance with the following regulations and standards, as amended:

- > Ontario Water Resources Act, R.R.O. 1990, Regulation 903 (WELLS): Specifically, but not limited to:
 - Section 1: Definitions (e.g., sealant, suitable sealant, bentonite, tremie pipe).
 - Section 12.1: Log and Field Notes (required during abandonment).
 - Section 16.5: Records Well Abandonment (Well Record completion and submission).
 - Section 21: Abandonment Conditions (conditions requiring abandonment).
 - o Section 21.1: Abandonment Procedure (detailed steps and material requirements).
 - Section 22: Protection of Well Tag (removal procedures).

> Relevant Standards referenced in R.R.O. 903 for materials:

 ASTM, ANSI, AWWA, NSF/ANSI/CAN standards for casing/materials as cross-referenced by R.R.O. 903 Section 1 and 21.1(3). Abandonment materials must meet the requirements of Section 21.1(3) regarding composition and freedom from contamination.

> Occupational Health and Safety Act, R.S.O. 1990, c. O.1 and its regulations.

4. PERSONNEL QUALIFICATIONS AND RESPONSIBILITIES

All well abandonment activities shall be performed by or under the direct supervision of a Well Technician holding a valid licence from the Ontario Ministry of the Environment, Conservation and Parks (MECP) with the appropriate class for the type of work and well being abandoned, unless specifically exempted by R.R.O. 903 Section 21(13)(a-d). 9.1

- The work shall be conducted under the oversight of a licensed Well Contractor as required by R.R.O. 903 Section 21(13).
- > The Engaged Well Contractor is responsible for ensuring all personnel on site are appropriately qualified and that all work strictly adheres to this specification and R.R.O. 903.
- The well technician supervising or performing the work must have their licence on site and produce it upon request. All personnel shall comply with the requirements of the Act and the Regulation.
- The Responsible Professional Engineer/Geoscientist will provide technical oversight and validation for the project scope and objectives but the Well Contractor/Technician holds direct responsibility for the safe and compliant execution of the well abandonment work as required by R.R.O. 903.

5. SUBMITTALS

Submit the following to the City of Mississauga or their designated representative for review and acceptance prior to commencing work:

- > Detailed Work Plan and Schedule.
- Site-specific Health and Safety Plan (HASP), including provisions for confined space entry (if required), excavation safety, and personal protective equipment (PPE).
- Site-specific Environmental Protection Plan (EPP), including spill prevention and response procedures, dust control, erosion and sediment control.
- > Waste Management Plan, including anticipated waste streams, proposed disposal facilities, and waste tracking procedures.
- > Proposed method for emptying the cistern, including proposed disposal of any pumped water or sludge.
- > For well and cistern decommissioning: Proposed source and type of inert fill material, including any required documentation (e.g., gradation, contamination testing if required by Professional or regulations).
- > For cistern removal: Proposed method for dismantling and removing the cistern structure, and planned staging area for materials prior to disposal.
- > Traffic management plan.
- > Emergency contact information.

6. SITE PREPARATION

- > Delineate the work area and install temporary fencing or barriers as required for safety and security.
- > Implement traffic control measures as per the approved plan.
- > Establish temporary erosion and sediment control measures.
- > Implement dust control measures as needed.

Identify and locate all adjacent underground and above-ground utilities. Ensure protection of all utilities that are to remain in service. Contact Ontario One Call (or equivalent) for utility locates.

7. REQUIRED MATERIALS

- Abandonment Barrier Materials: Materials used for abandonment shall constitute a "suitable sealant" or "abandonment barrier" as defined in R.R.O. 903 Section 1 and specified in Section 21.1(3) and (5). These materials must be compatible with the quality of water in the well and shall not contain soil or drill cuttings or any other materials that may impair the integrity of the abandonment barrier (21.1(3)). If the well is in contact with contaminants, the barrier must be stable in their presence (21.1(3) Para 3).
- Specific Materials for Large Diameter Wells [> 65 cm diameter, per 21.1(5)]: As detailed in the procedure (Section 6.0, Step 4), the abandonment barrier for large diameter wells (> 65 cm) involves the specific sequential placement of:
 - Clean sand or pea gravel.
 - Bentonite chips or pellets.
 - Bentonite slurry (clean water and at least 20% bentonite solids) or the chosen abandonment barrier from 21.1(3).
 - Clean gravel, sand, silt, or clay or abandonment barrier interspersed with sand/pea gravel.
- **Placement Method:** Bentonite chips/pellets shall be screened and placed according to the manufacturer's specifications (21.1(3) Para 7 vii).
- Sealant Properties: The abandonment barrier must be compatible with the quality of water found in the well and must not contain any materials that may impair its integrity, including soil or drill cuttings (R.R.O. 903 21.1(3) Para 1, 2). If the well is in contact with contaminants, the barrier must be stable in their presence (R.R.O. 903 21.1(3) Para 3).
- Sand/Gravel (for >65 cm wells or minimizing sealant loss): Clean sand or pea gravel (for use at the bottom of >65 cm wells or adjacent to water zones/fractures per R.R.O. 903 21.1(4) and 21.1(5)).
- **Bentonite for Surface Seal:** Bentonite chips, pellets, granules, or powder for the surface seal (R.R.O. 903 21.1(1) Para 8(i)). Must be placed according to manufacturer's specifications.
- **Soil Cover:** Clean soil or other material native to the site surface for final backfill (R.R.O. 903 21.1(1) Para 8(ii)).
- **Water:** Clean water for mixing slurries.
- **Estimated Material Quantities:** The Contractor shall verify required quantities based on actual well dimensions and conditions.
- **Structural Strength:** For wells greater than 65.0 cm in diameter, sealing materials shall be selected and placed to provide appropriate structural strength to support the weight of persons and vehicles that may move over the area after it is filled (21.1(6)).

8. ABANDONMENT PROCEDURE

8.1 Water Well

The abandonment procedure shall follow the steps outlined in R.R.O. 903 Section 21.1, paying particular attention to the specific requirements for dug wells (> 65 cm diameter) in Section 21.1(5) and well pits in Section 21.1(9).

8.1.1 Pre-Abandonment Activities:

- > Verify site hazards identified in Project Information (Section 2.0) and take appropriate precautions.
- > Confirm well and cistern location, estimated dimensions, and observed construction details.
- > Review any available well records or historical information (as applicable).
- > Ensure that the conditions requiring abandonment under R.R.O. 903 Section 21 have been met or addressed (Note: the well and cistern is not being used or maintained).
- Step-by-Step Procedure (Based on R.R.O. 903 Section 21.1(1), (5), and (9)):
 - Well Tag Removal: Not Applicable there is no applicable well tag.
 - Equipment and Debris Removal: Remove all equipment (e.g., piping) and debris (e.g., collapsed casing sections, foreign materials) from the well bore (21.1(1) Para 2). Make reasonable efforts to remove collapsed casing if present.
 - Well Pit Handling: If a well pit is present, Section 21.1 applies to the well pit as well as the well bore (21.1(9)). Removal of below-ground concrete structures, foundations, and slabs associated with the well pit shall be performed to a depth adequate to accommodate surface sealing measures (Step 8), unless removal would destabilize remaining structures (21.1(1) Para 7, 21.1(9)). The well pit volume shall be filled as part of the overall abandonment process, integrating the requirements for plugging the well bore and surface sealing. The large diameter well procedure (Step 4 below) should be applied within the well pit area extending downwards.
 - Plugging the Well Bore and Annular Space: Plug the well bore and any annular space with a continuous column of abandonment barrier material(s) from the bottom of the well upward to approximately two metres (2 m) below the ground surface (21.1(1) Para 3).
- Crucially, for wells greater than 65.0 cm in diameter (typical of dug wells), the following specific sequential steps from R.R.O. 903 Section 21.1(5) must be followed:
 - Place clean sand or pea gravel from the bottom of the well to the top of the deepest water producing zone or the top of the well screen, whichever is deeper (21.1(5) Para 1). Clean sand or gravel may also be placed adjacent to water producing zones/fractures to minimize sealant loss (21.1(4)).
 - Place at least 0.1 metres (10 cm) of bentonite chips or pellets over the sand or pea gravel placed in Step 4a (21.1(5) Para 2). Ensure chips/pellets are screened and placed per manufacturer's specifications (21.1(3) Para 7 vii).

- If the water level can be drawn down to the top of the bentonite chips or pellets:
 - Draw down the water level to the top of the bentonite chips or pellets (21.1(5) Para 3 i).
 - Place at least 0.3 metres (30 cm) of a bentonite slurry (clean water and at least 20% bentonite solids, compatible with water quality) over the bentonite chips or pellets (21.1(5) Para 3 ii). Place slurry using a tremie pipe, keeping the pipe immersed in the rising accumulation (21.1(3) Para 8).
 - Drop clean gravel, sand, silt, or clay over the bentonite slurry to fill the remainder of the well bore upward to approximately two metres below ground surface, while maintaining at least 0.3 metres of the bentonite slurry above the rising accumulation of gravel, sand, silt, or clay (21.1(5) Para 3 iii).
- If the water level cannot be drawn down to the top of the bentonite chips or pellets (e.g., well refills too quickly):
 - Fill the remainder of the well bore upward to approximately two metres below ground surface with an abandonment barrier selected from the list in Section 5.2 (21.1(5) Para 4).
 - This abandonment barrier may be interspersed with clean sand or pea gravel placed in each water producing zone of the well (21.1(5) Para 4). Wet barriers must be placed using a tremie pipe (21.1(3) Para 8).
- Casing/Screen Handling During Plugging: If well casing or screen was not removed in Step 2, remove it where reasonably possible during the plugging process (Step 4), keeping the bottom of the casing immersed in the rising accumulation of the abandonment barrier until the required level (approx. 2m bgs) is reached (21.1(1) Para 4).
- Casing/Screen Removal After Plugging: If casing or screen was not removed in Step 2 or Step 5, remove it where reasonably possible to a minimum depth of two metres (2 m) below the ground surface after plugging is complete (21.1(1) Para 5).
- Setting Time (if cement used): If the abandonment barrier placed in Step 4 contains cement (e.g., cement-bentonite grout, concrete slurry), allow it to set until firm according to the manufacturer's specifications or for 12 hours, whichever is longer (21.1(1) Para 6). If, after setting, the material has settled or subsided, top it up to approximately two metres (2 m) below the ground surface (21.1(1) Para 6).
- Removal of Near-Surface Structures: Ensure below-ground concrete structures, foundations, and slabs (including well pit structures not previously removed in Step 3) are removed to a depth adequate to accommodate the surface sealing measures described in Step 8, unless removal would destabilize remaining structures (21.1(1) Para 7, 21.1(9)).
- Surface Sealing: Seal the well opening at the ground surface (21.1(1) Para 8). This involves:
 - Placing between 50 and 150 centimetres (0.5 1.5 m) in vertical thickness of bentonite chips, pellets, granules, or powder in the well opening, placed in accordance with the manufacturer's specifications (21.1(1) Para 8 i).

- Filling the remaining well opening from the top of the bentonite seal to the ground surface with soil cover, or other material that is more in keeping with the surface material immediately adjacent to the well opening (21.1(1) Para 8 ii). This prevents inadvertent or unauthorized access.
- > Site Stabilization: Stabilize the disturbed area to prevent erosion (21.1(1) Para 9).
- > Alternative Abandonment Method (Excavation):
 - As an alternative to the steps above, the well may be abandoned by excavation of the entire well in the course of work carried out for another purpose (21.1(8)). If this method is used, paragraphs 2 to 9 of subsection 21.1(1) and subsections 21.1(3) to (7) do not apply. The well record must still be completed and submitted.

8.2 Cistern

Complete Removal

- a) Safely demolish and remove the entire cistern structure (walls, floor, roof/crown).
- b) Break down excavated brick and concrete into manageable sizes for hauling.
- c) Load and transport demolition debris to an approved receiving facility (e.g., construction and demolition waste landfill, recycling facility) in accordance with the Waste Management Plan.
- d) Obtain and retain documentation (e.g., manifests, weigh tickets) for all disposed materials.

Backfilling and Compactions: After removal, backfill the excavation using approved backfill material as directed by the Project Geotechnical Professional. Place backfill material in lifts and compact each lift to the required density specified by the Project Geotechnical Professional. Use appropriate compaction equipment and techniques. Perform density testing as required by the Project Geotechnical Professional to confirm adequate compaction.

9. QUALITY CONTROL

- **>** The Contractor shall ensure strict adherence to all requirements of R.R.O. 903 and this specification.
- > The well contractor shall ensure that:
 - All work strictly adheres to the requirements of R.R.O. 1990, Regulation 903 (WELLS) and this specification.
 - Abandonment barrier materials are selected and placed correctly according to regulatory requirements, manufacturer specifications, and accepted industry practice.
 - Slurry mixtures are properly mixed to achieve the required consistency and solids content.
 - Bentonite chips/pellets are placed according to manufacturer's specifications for hydration/placement depth.

- Sufficient abandonment barrier is placed to form a continuous column from the bottom of the well to approximately two metres below ground surface, preventing the movement of water, contaminants, or other material between subsurface formations or between a subsurface formation and the top of the abandonment barrier (R.R.O. 903 21.1(1) Para 3).
- For wells >65 cm diameter, the specific placement sequence described in R.R.O. 903 21.1(5) is followed.
- Near-surface structures are removed to the required depth.
- The surface seal uses the correct thickness of bentonite material as specified (50-150 cm).
- Sealing materials for >65 cm wells provide appropriate structural strength at the surface (R.R.O. 903 21.1(6)).

10. WASTE DISPOSAL

Waste disposal must comply with Ontario Ministry of the Environment, Conservation and Parks (MECP) regulations and any local waste disposal facility requirements.

11. SITE RESTORATION

- The disturbed area around the former well and cistern location shall be graded and stabilized to prevent erosion (R.R.O. 903 21.1(1) Para 9).
- Restore the site to a condition as agreed upon with the City of Mississauga or as it existed prior to abandonment activities, to the extent practicable.
- Notify the Environmental Engineer of the source site for any imported soil (as defined under O. Reg. 153/04), for testing by the Environmental Engineer under separate contract prior to importation.

12. DOCUMENTATION AND REPORTING

- ➤ The Contractor shall complete a well record (Form 9 supplied by the MECP) for the well abandonment in accordance with R.R.O. 903 Section 16.5(1)(a). The well record must accurately detail the abandonment procedures, materials used (including quantities), depths of different materials/layers placed (especially for > 65 cm wells), casing/screen handling, well tag disposition, and any issues encountered. Field notes and logs of materials encountered during any initial clearing/preparation should support the well record (R.R.O. 903 12.1(1)).
- Deliver a copy of the completed well record to the owner of the land on which the well is situated within 14 days after the date on which the well construction equipment is removed from the site (R.R.O. 903 16.5(1)(b)(i)).
- Forward a copy of the completed well record, and any well tag that was removed from the well, to the Director (MECP) within 30 days after the date on which the well construction equipment is removed from the site (R.R.O. 903 16.5(1)(c)(i)).
- Retain a copy of the well record for a minimum of two years (implied by 16.3(1)(d) which applies to construction records; good practice for abandonment).

- > Maintain a daily log of all decommissioning activities, including personnel on site, weather, work performed, materials used, quantities of waste generated, observations, and any issues encountered.
- Record details of waste disposal, including dates, quantities, types of waste, transporter information, and disposal facility name and location. Retain copies of all waste manifests, weigh tickets, and disposal receipts.
- Take progress photographs documenting key stages of the work (e.g., pre-excavation, excavation, dewatering/cleaning, cistern condition, filling/removal, backfilling, final surface restoration).
- Submit daily logs and progress reports as required by the Professional.
- > Within 20 business days of completing the field work, submit a final Decommissioning Report to the City of Mississauga. The final report shall include:
 - Summary of work performed and dates of field activities.
 - o Details of the decommissioning method implemented (filling or removal).
 - Quantities and types of materials used (e.g., fill material).
 - Documentation of waste disposal (manifests, receipts).
 - Summary of any issues encountered and corrective actions taken.
 - Copies of permits and approvals.
 - Photographic log.
 - Confirmation that the work was completed in accordance with the approved Work Plan and this specification.

13. HEALTH AND SAFETY

All work shall be performed in accordance with the Health and Safety requirements in the City of Mississauga bid / contacts documents, including but not limited to:

- > All work shall be performed in compliance with the latest version of the Occupational Health and Safety Act (Ontario) and its regulations.
- The Contractor shall develop and implement a site-specific health and safety plan covering all aspects of the abandonment work, including but not limited to:
 - Excavation safety (if applicable).
 - Confined space entry (if accessing the well bore directly is necessary and safe).
 - Handling of materials (bentonite, cement, etc.).
 - Potential hazards from the well (e.g., unstable ground, contaminated water, gases per 21(6)). * Site-specific hazards (Section 2.0).
- > All personnel shall be trained on the site-specific safety plan and required procedures.

14. REFERENCES

- > Ontario Water Resources Act, R.R.O. 1990, Regulation 903 (WELLS)
- > Occupational Health and Safety Act, R.S.O. 1990, c. O.1

9.1

FIGURES

q		1
J	٠	

Ave,
is O'Brien
60-24

Figure 2

Site Layout Plan

APPENDIX A

SITE PHOTOGRAPHS

Photograph 1: General Access to the Well and Cistern Area

Photograph 2: General View of Well Area

Photograph 3: General View of Cistern Area

Photograph 4: Well Opening

Photograph 5: Well Interior

Photograph 6: Cistern Exterior Surface

Photograph 7: Cistern Interior

APPENDIX B

IRRIGATION LAYOUT PLAN

APPENDIX C

WATER SAMPLE ANALYTICAL RESULTS

Your Project #: 20550 Your C.O.C. #: 1043796-01-01

Attention: Jeff Muir

Keystone Environmental Ontario Ltd. 700 – 6733 Mississauga Road Mississauga, ON CANADA L5N 6J5

> Report Date: 2025/05/08 Report #: R8534567 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C548490 Received: 2025/04/30, 18:18

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Biochemical Oxygen Demand (BOD)	2	2025/05/01	2025/05/06	CAM SOP-00427	SM 24 5210B m
Total Residual Chlorine	2	2025/05/01	2025/05/01	CAM SOP 00425	SM 24 4500-CL G m
Chromium (VI) in Water	2	N/A	2025/05/03	CAM SOP-00436	EPA 7199 m
Total Cyanide	2	2025/05/01	2025/05/01	CAM SOP-00457	OMOE E3015 5 m
Petroleum Hydro. CCME F1 & BTEX in Water	2	N/A	2025/05/08	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	2	2025/05/05	2025/05/06	CAM SOP-00316	CCME PHC-CWS m
Mercury in Water by CVAA	1	2025/05/05	2025/05/05	CAM SOP-00453	EPA 7470A m
Mercury in Water by CVAA	1	2025/05/07	2025/05/07	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	2	2025/05/06	2025/05/07	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	2	N/A	2025/05/01	CAM SOP-00552	SM9222B, MECP E3371
PAH Compounds in Water by GC/MS (SIM)	2	2025/05/05	2025/05/06	CAM SOP-00318	EPA 8270E
Polychlorinated Biphenyl in Water	2	2025/05/06	2025/05/06	CAM SOP-00309	EPA 8082A m
Phenols (4AAP)	2	N/A	2025/05/06	CAM SOP-00444	OMOE E3179 m
рН	2	2025/05/01	2025/05/02	CAM SOP-00413	SM 24th-4500H+ B
Total PAHs: Barrie/Mississauga Sewer Use (2)	2	N/A	2025/05/06	CAM SOP - 00301	
Total Suspended Solids	2	2025/05/05	2025/05/07	CAM SOP-00428	SM 24 2540D m
Volatile Organic Compounds in Water	2	N/A	2025/05/04	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the

Page 1 of 22

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your Project #: 20550 Your C.O.C. #: 1043796-01-01

Attention: Jeff Muir

Keystone Environmental Ontario Ltd. 700 – 6733 Mississauga Road Mississauga, ON CANADA L5N 6J5

> Report Date: 2025/05/08 Report #: R8534567 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C548490

Received: 2025/04/30, 18:18

customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

(2) Total PAHs include only those PAHs specified in the sewer use by-by-law.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Kudrat Bajwa, B.Sc., Project Manager Email: Kudrat.Bajwa@bureauveritas.com Phone# (905)817-5755

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 22

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

MISSISSAUGA STORM SEWER BYLAW (46-2022)

Bureau Veritas ID					AQKL28			AQKL28			
Sampling Date					2025/04/30			2025/04/30			
Sumpling Dute					03:00			03:00	L		
COC Number					1043796-01-01			1043796-01-01			
		UNITS	Criteria	Criteria-2	W-1	RDL	QC Batch	W-1 Lab-Dup	RDL	QC Batch	
Inorganics											
Total BOD		mg/L	15	-	<2	2	9920065				
Total Chlorine		mg/L	1.0	-	<0.1	0.1	9920180	<0.1	0.1	9920180	
рН		рН	6:9	-	8.18		9920606				
Phenols-4AAP		mg/L	0.008	-	<0.0010	0.0010	9923394				
Total Suspended Solids		mg/L	15	-	<10	10	9922416				
Total Cyanide (CN)		mg/L	0.02	-	<0.0050	0.0050	9920299				
Metals									-		
Chromium (VI)		ug/L	40	140	<0.50	0.50	9921706				
Mercury (Hg)		mg/L	0.0004	0.00029	<0.00010	0.00010	9922133				
Total Aluminum (Al)		ug/L	1000	-	<4.9	4.9	9923483				
Total Arsenic (As)		ug/L	20	1900	1.3	1.0	9923483				
Total Cadmium (Cd)		ug/L	8	2.7	<0.090	0.090	9923483				
Total Chromium (Cr)		ug/L	80	810	<5.0	5.0	9923483				
Total Copper (Cu)		ug/L	40	87	<0.90	0.90	9923483				
Total Lead (Pb)		ug/L	120	25	<0.50	0.50	9923483				
Total Manganese (Mn)		ug/L	2000	-	17	2.0	9923483				
Total Nickel (Ni)		ug/L	80	490	<1.0	1.0	9923483				
Total Phosphorus (P)		ug/L	400	-	120	100	9923483				
Total Selenium (Se)		ug/L	20	63	<2.0	2.0	9923483				
Total Silver (Ag)		ug/L	120	1.5	<0.090	0.090	9923483				
Total Zinc (Zn)		ug/L	200	1100	7.3	5.0	9923483				
Calculated Parameters					-			-			
Total PAHs		ug/L	2	-	<0.20	0.20	9919766				
Polyaromatic Hydrocarb	ons										
Acenaphthene		ug/L	-	600	<0.050	0.050	9922362				
Acenaphthylene		ug/L	-	1.8	<0.050	0.050	9922362				
Anthracene		ug/L	-	2.4	<0.050	0.050	9922362				
No Fill	No Exceedance	9									
Grey	Exceeds 1 crite	ria policy/lev	el								
Black	Black Exceeds both criteria/levels										
RDL = Reportable Detect	Reportable Detection Limit										
QC Batch = Quality Control Batch											
Lab-Dup = Laboratory Initiated Duplicate											
Criteria: City of Mississau	Criteria: City of Mississauga Storm Sewer Use By-Law 0046-2022										
Criteria-2: Ontario Reg. 1	53/04 (Amende	d April 15, 20	11)								
Table 3: Full Depth Gene	ric Site Condition	n Standards ir	n a Non-P	otable Grou	und Water Condit	ion					
Non- Potable Ground Wa	ater - All Types of	r Property Us	es - Coars	e lextured	2011						

Page 3 of 22

MISSISSAUGA STORM SEWER BYLAW (46-2022)

Bureau Veritas ID					AQKL28			AQKL28		
Sampling Date			Γ		2025/04/30			2025/04/30		
ounip			<u> </u>	<u> </u>	03:00			03:00		
COC Number			<u> </u>	 	1043796-01-01			1043796-01-01		
		UNITS	Criteria	Criteria-2	W-1	RDL	QC Batch	W-1 Lab-Dup	RDL	QC Batch
Benzo(a)anthracene		ug/L	-	4.7	<0.050	0.050	9922362			
Benzo(a)pyrene		ug/L	-	0.81	<0.0090	0.0090	9922362			
Benzo(g,h,i)perylene		ug/L	-	0.2	<0.050	0.050	9922362			
Benzo(k)fluoranthene		ug/L	-	0.4	<0.050	0.050	9922362			
Chrysene		ug/L	-	1	<0.050	0.050	9922362			
Dibenzo(a,h)anthracene		ug/L	-	0.52	<0.050	0.050	9922362			
Fluoranthene		ug/L	-	130	<0.050	0.050	9922362			
Fluorene		ug/L	-	400	<0.050	0.050	9922362			
Indeno(1,2,3-cd)pyrene		ug/L	-	0.2	<0.050	0.050	9922362			
1-Methylnaphthalene		ug/L	-	1800	<0.050	0.050	9922362			
2-Methylnaphthalene		ug/L	-	1800	<0.050	0.050	9922362			
Naphthalene		ug/L	-	1400	<0.050	0.050	9922362			
Phenanthrene		ug/L	-	580	<0.030	0.030	9922362			
Pyrene		ug/L	-	68	<0.050	0.050	9922362			
Benzo(b)fluoranthene		ug/L	-	0.75	<0.030	0.030	9922362			
Volatile Organics								-		
Benzene		ug/L	2	44	<0.20	0.20	9920930	<0.20	0.20	9920930
1,2-Dichlorobenzene		ug/L	5.6	4600	<0.40	0.40	9920930	<0.40	0.40	9920930
1,4-Dichlorobenzene		ug/L	6.8	8	<0.40	0.40	9920930	<0.40	0.40	9920930
Ethylbenzene		ug/L	2	2300	<0.20	0.20	9920930	<0.20	0.20	9920930
Methylene Chloride(Dicl	hloromethane)	ug/L	5.2	610	<2.0	2.0	9920930	<2.0	2.0	9920930
1,1,1,2-Tetrachloroetha	ne	ug/L	-	3.3	<0.50	0.50	9920930	<0.50	0.50	9920930
1,1,2,2-Tetrachloroetha	ne	ug/L	17	3.2	<0.40	0.40	9920930	<0.40	0.40	9920930
Tetrachloroethylene		ug/L	4.4	1.6	<0.20	0.20	9920930	<0.20	0.20	9920930
Toluene		ug/L	2	18000	<0.20	0.20	9920930	<0.20	0.20	9920930
Trichloroethylene		ug/L	7.6	1.6	<0.20	0.20	9920930	<0.20	0.20	9920930
p+m-Xylene		ug/L	-	-	<0.20	0.20	9920930	<0.20	0.20	9920930
o-Xylene		ug/L	-	-	<0.20	0.20	9920930	<0.20	0.20	9920930
No Fill	No Exceedance	e								
Grey	Exceeds 1 crite	eria policy/lev	/el							
Black	Exceeds both a	criteria/levels	5							
RDL = Reportable Detect	DL = Reportable Detection Limit									
QC Batch = Quality Cont	rol Batch									
Lab-Dup = Laboratory In	itiated Duplicate	1								

Criteria: City of Mississauga Storm Sewer Use By-Law 0046-2022

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

MISSISSAUGA STORM SEWER BYLAW (46-2022)

Bureau Veritas ID	Veritas ID AQKL28 AQKL28										
Sampling Date					2025/04/30			2025/04/30			
			───	<u> </u>	03:00	├────	+	03:00	—┘		
COC Number			──	 	1043796-01-01		<u> </u>	1043/96-01-01	└── /		
		UNITS	Criteria	Criteria-2	W-1	RDL	QC Batch	W-1 Lab-Dup	RDL	QC Batch	
Total Xylenes		ug/L	4.4	4200	<0.20	0.20	9920930	<0.20	0.20	9920930	
PCBs											
Total PCB		ug/L	0.4	7.8	<0.05	0.05	9923194				
Microbiological											
Escherichia coli		CFU/100mL	200	-	<10	10	9920446				
Surrogate Recovery (%)											
D10-Anthracene	% 91 9922362										
D14-Terphenyl (FS)		%	-	-	83		9922362				
D8-Acenaphthylene		%	-	-	109		9922362				
Decachlorobiphenyl		%	-	-	101	l	9923194				
4-Bromofluorobenzene		%	-	-	95		9920930	96		9920930	
D4-1,2-Dichloroethane		%	-	-	111		9920930	115		9920930	
D8-Toluene		%	-	-	102		9920930	100		9920930	
No Fill	No Exceedance	e									
Grey	Exceeds 1 crite	eria policy/lev	el								
Black	Exceeds both o	criteria/levels									
RDL = Reportable Detect	tion Limit										
QC Batch = Quality Cont	rol Batch										
Lab-Dup = Laboratory In	itiated Duplicate	1									
Criteria: City of Mississa	uga Storm Sewei	r Use By-Law (0046-202	:2							
Criteria-2: Ontario Reg. 2	153/04 (Amende	d April 15, 20	11)								
Table 3: Full Depth Gene	eric Site Condition	n Standards ir	۱ a Non-P	otable Grou	und Water Condit	ion					
Non- Potable Ground W	ater - All Types o	f Property Use	es - Coars	se lextured	Soil						

Page 5 of 22 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

MISSISSAUGA STORM SEWER BYLAW (46-2022)

Bureau Veritas ID					AQKL29			AQKL29			
Sampling Date					2025/04/30			2025/04/30			
					04:30			04:30			
COC Number					1043796-01-01			1043796-01-01			
		UNITS	Criteria	Criteria-2	C-1	RDL	QC Batch	C-1 Lab-Dup	RDL	QC Batch	
Inorganics											
Total BOD		mg/L	15	-	<2	2	9920065	<2	2	9920065	
Total Chlorine		mg/L	1.0	-	<0.1	0.1	9920180				
рН		рН	6:9	-	8.09		9920606				
Phenols-4AAP		mg/L	0.008	-	<0.0010	0.0010	9923394				
Total Suspended Solids		mg/L	15	-	410	10	9922416				
Total Cyanide (CN)		mg/L	0.02	-	<0.0050	0.0050	9920351				
Metals											
Chromium (VI)		ug/L	40	140	<0.50	0.50	9921706				
Mercury (Hg)		mg/L	0.0004	0.00029	0.00027	0.00010	9923818				
Total Aluminum (Al)		ug/L	1000	-	1200	4.9	9923483				
Total Arsenic (As)		ug/L	20	1900	1.2	1.0	9923483				
Total Cadmium (Cd)		ug/L	8	2.7	0.16	0.090	9923483				
Total Chromium (Cr)		ug/L	80	810	<5.0	5.0	9923483				
Total Copper (Cu)		ug/L	40	87	40	0.90	9923483				
Total Lead (Pb)		ug/L	120	25	8.9	0.50	9923483				
Total Manganese (Mn)		ug/L	2000	-	59	2.0	9923483				
Total Nickel (Ni)		ug/L	80	490	2.9	1.0	9923483				
Total Phosphorus (P)		ug/L	400	-	370	100	9923483				
Total Selenium (Se)		ug/L	20	63	<2.0	2.0	9923483				
Total Silver (Ag)		ug/L	120	1.5	3.4	0.090	9923483				
Total Zinc (Zn)		ug/L	200	1100	50	5.0	9923483				
Calculated Parameters			•								
Total PAHs		ug/L	2	-	<0.20	0.20	9919766				
Polyaromatic Hydrocarb	ons										
Acenaphthene		ug/L	-	600	<0.050	0.050	9922362	<0.050	0.050	9922362	
Acenaphthylene		ug/L	-	1.8	<0.050	0.050	9922362	<0.050	0.050	9922362	
Anthracene		ug/L	-	2.4	<0.050	0.050	9922362	<0.050	0.050	9922362	
No Fill	No Exceedance	e									
Grey	Exceeds 1 crite	eria policy/lev	vel								
Black	Black Exceeds both criteria/levels										
RDL = Reportable Detect	DI = Reportable Detection Limit										
QC Batch = Quality Contr	QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated Duplicate											
Criteria: City of Mississauga Storm Sewer Use By-Law 0046-2022											
Criteria-2: Ontario Reg. 1	.53/04 (Amende	d April 15, 20	11)								
Table 3: Full Depth Gener Non- Potable Ground Wa	ric Site Conditior Iter - All Types of	n Standards in Property Us	n a Non-P es - Coars	otable Grou e Textured	und Water Condit Soil	tion					

MISSISSAUGA STORM SEWER BYLAW (46-2022)

Bureau Veritas ID					AQKL29			AQKL29		
Sampling Date					2025/04/30 04:30			2025/04/30 04:30		
COC Number					1043796-01-01			1043796-01-01		
		UNITS	Criteria	Criteria-2	C-1	RDL	QC Batch	C-1 Lab-Dup	RDL	QC Batch
Benzo(a)anthracene		ug/L	-	4.7	<0.050	0.050	9922362	<0.050	0.050	9922362
Benzo(a)pyrene		ug/L	-	0.81	<0.0090	0.0090	9922362	<0.0090	0.0090	9922362
Benzo(g,h,i)perylene		ug/L	-	0.2	<0.050	0.050	9922362	<0.050	0.050	9922362
Benzo(k)fluoranthene		ug/L	-	0.4	<0.050	0.050	9922362	<0.050	0.050	9922362
Chrysene		ug/L	-	1	<0.050	0.050	9922362	<0.050	0.050	9922362
Dibenzo(a,h)anthracene		ug/L	-	0.52	<0.050	0.050	9922362	<0.050	0.050	9922362
Fluoranthene		ug/L	-	130	<0.050	0.050	9922362	<0.050	0.050	9922362
Fluorene		ug/L	-	400	<0.050	0.050	9922362	<0.050	0.050	9922362
Indeno(1,2,3-cd)pyrene		ug/L	-	0.2	<0.050	0.050	9922362	<0.050	0.050	9922362
1-Methylnaphthalene		ug/L	-	1800	<0.050	0.050	9922362	<0.050	0.050	9922362
2-Methylnaphthalene		ug/L	-	1800	<0.050	0.050	9922362	<0.050	0.050	9922362
Naphthalene		ug/L	-	1400	<0.050	0.050	9922362	<0.050	0.050	9922362
Phenanthrene		ug/L	-	580	<0.030	0.030	9922362	<0.030	0.030	9922362
Pyrene		ug/L	-	68	<0.050	0.050	9922362	<0.050	0.050	9922362
Benzo(b)fluoranthene		ug/L	-	0.75	<0.030	0.030	9922362	<0.030	0.030	9922362
Volatile Organics										
Benzene		ug/L	2	44	<0.20	0.20	9920930			
1,2-Dichlorobenzene		ug/L	5.6	4600	<0.40	0.40	9920930			
1,4-Dichlorobenzene		ug/L	6.8	8	<0.40	0.40	9920930			
Ethylbenzene		ug/L	2	2300	<0.20	0.20	9920930			
Methylene Chloride(Dich	nloromethane)	ug/L	5.2	610	<2.0	2.0	9920930			
1,1,1,2-Tetrachloroethar	ne	ug/L	-	3.3	<0.50	0.50	9920930			
1,1,2,2-Tetrachloroethar	ne	ug/L	17	3.2	<0.40	0.40	9920930			
Tetrachloroethylene		ug/L	4.4	1.6	<0.20	0.20	9920930			
Toluene		ug/L	2	18000	<0.20	0.20	9920930			
Trichloroethylene		ug/L	7.6	1.6	<0.20	0.20	9920930			
p+m-Xylene		ug/L	-	-	<0.20	0.20	9920930			
o-Xylene		ug/L	-	-	<0.20	0.20	9920930			
No Fill	No Exceedanc	e								
Grey	Exceeds 1 crite	eria policy/lev	vel							
Black	Exceeds both	criteria/levels	5							
RDL = Reportable Detect	ion Limit									

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: City of Mississauga Storm Sewer Use By-Law 0046-2022

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

Page 7 of 22

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

MISSISSAUGA STORM SEWER BYLAW (46-2022)

Bureau Veritas ID					AQKL29			AQKL29		
Sampling Date					2025/04/30 04:30			2025/04/30 04:30		
COC Number					1043796-01-01			1043796-01-01		
		UNITS	Criteria	Criteria-2	C-1	RDL	QC Batch	C-1 Lab-Dup	RDL	QC Batch
Total Xylenes		ug/L	4.4	4200	<0.20	0.20	9920930			
PCBs										
Total PCB		ug/L	0.4	7.8	<0.05	0.05	9923194			
Microbiological										
Escherichia coli		CFU/100mL	200	-	<10	10	9920446			
Surrogate Recovery (%)										
D10-Anthracene		%	-	-	91		9922362	86		9922362
D14-Terphenyl (FS)		%	-	-	82		9922362	77		9922362
D8-Acenaphthylene		%	-	-	107		9922362	101		9922362
Decachlorobiphenyl		%	-	-	94		9923194			
4-Bromofluorobenzene		%	-	-	95		9920930			
D4-1,2-Dichloroethane		%	-	-	115		9920930			
D8-Toluene		%	-	-	102		9920930			
No Fill	No Exceedanc	e								
Grey	Exceeds 1 crit	eria policy/lev	/el							
Black	Exceeds both	criteria/levels	i							
RDL = Reportable Detect	ion Limit									
QC Batch = Quality Contr	rol Batch									
Lab-Dup = Laboratory Ini	itiated Duplicate	ž								
Criteria: City of Mississau	uga Storm Sewer	r Use By-Law (0046-202	2						
Criteria-2: Ontario Reg. 1	.53/04 (Amende	d April 15, 20	11)							
Table 3: Full Depth Gene	ric Site Conditio	n Standards in	۱ a Non-P	otable Grou	und Water Condit	ion				
Non- Potable Ground Wa	ater - All Types o	t Property Use	es - Coars	se lextured	Soll					

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID	AQKL28 AQKL28 AQKL29												
Sampling Date			2025/04/30			2025/04/30			2025/04/30				
Sampling Date			03:00			03:00			04:30				
COC Number			1043796-01-01			1043796-01-01			1043796-01-01				
	UNITS	Criteria	W-1	RDL	QC Batch	W-1 Lab-Dup	RDL	QC Batch	C-1	RDL	QC Batch		
BTEX & F1 Hydrocarbons									<u> </u>				
F1 (C6-C10)	1 (C6-C10) ug/L 750 <25 25 9924502 <25 25 9924502 <25 25 99									9924502			
F1 (C6-C10) - BTEX	ug/L	750	<25	25	9924502	<25	25	9924502	<25	25	9924502		
F2-F4 Hydrocarbons													
F2 (C10-C16 Hydrocarbons	s) ug/L 150 <90 90 9922397 <90 90 9922397												
F3 (C16-C34 Hydrocarbons	s) ug/L	500	<200	200	9922397				<200	200	9922397		
F4 (C34-C50 Hydrocarbons	500	<200	200	9922397				<200	200	9922397			
Reached Baseline at C50	ug/L	-	Yes		9922397				Yes		9922397		
Surrogate Recovery (%)	Surrogate Recovery (%)												
1,4-Difluorobenzene	%	-	109		9924502	108		9924502	108		9924502		
4-Bromofluorobenzene	%	-	111		9924502	106		9924502	104		9924502		
D10-o-Xylene	%	-	114		9924502	113		9924502	110		9924502		
D4-1,2-Dichloroethane	%	-	107		9924502	108		9924502	106		9924502		
o-Terphenyl	%	-	98		9922397				100		9922397		
No Fill	No Exceeda	ance											
Grey	Exceeds 1 o	criteria po	olicy/level										
Black	Exceeds bo	oth criteri	a/levels										
RDL = Reportable Detectio	n Limit												
QC Batch = Quality Contro	l Batch												
Lab-Dup = Laboratory Initia	ated Duplic	cate											
Criteria: Ontario Reg. 153/ Table 3: Full Depth Generic	04 (Amend c Site Cond	led April 2 ition Stan	15, 2011) Idards in a Non-P	otabl	e Ground W	Vater Condition							

Non- Potable Ground Water - All Types of Property Uses - Coarse Textured Soil

9.1

Bureau Veritas ID	1		A0KI 29	1						
			2025/04/20							
Sampling Date			2025/04/30							
			04:30							
COC Number			1043796-01-01							
	LINITS	Critoria	C-1	PDI	OC Batch					
	UNITS	Cinterna	Lab-Dup	NDL	QC Datch					
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	150	<90	90	9922397					
F3 (C16-C34 Hydrocarbons)	ug/L	500	<200	200	9922397					
F4 (C34-C50 Hydrocarbons)	ug/L	500	<200	200	9922397					
Reached Baseline at C50	ug/L	-	Yes		9922397					
Surrogate Recovery (%)										
o-Terphenyl	%	-	97		9922397					
No Fill No Exceedanc	e									
Grey Exceeds 1 crite	eria poli	cy/level								
Black Exceeds both	criteria/	levels								
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Ba	atch									
Lab-Dup = Laboratory Initiate	d Duplic	ate								
Criteria: Ontario Reg. 153/04	(Amend	ed April 3	15, 2011)							
Table 3: Full Depth Generic Si	te Cond	ition Stan	dards in a Non-P	otable	e Ground					
Water Condition										
Non- Potable Ground Water -	All Type	es of Prop	erty Uses - Coars	e Tex	tured Soil					

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	AQKL28 W-1 Water					Collected: Shipped: Received:	2025/04/30 2025/04/30
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Rinchomical Owngon Dom	and (POD)	00	0020065	202E /0E /01	2025/05/06	Nucrat Nat	

Biochemical Oxygen Demand (BOD)	DO	9920065	2025/05/01	2025/05/06	Nusrat Naz
Total Residual Chlorine	SPEC	9920180	2025/05/01	2025/05/01	Gurparteek KAUR
Chromium (VI) in Water	IC	9921706	N/A	2025/05/03	Rupinder Sihota
Total Cyanide	SKAL/CN	9920299	2025/05/01	2025/05/01	Jency Sara Johnson
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	9924502	N/A	2025/05/08	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9922397	2025/05/05	2025/05/06	Mohammed Abdul Nafay Shoeb
Mercury in Water by CVAA	CV/AA	9922133	2025/05/05	2025/05/05	Maitri PATIL
Total Metals Analysis by ICPMS	ICP/MS	9923483	2025/05/06	2025/05/07	Thuy Linh Nguyen
E.coli, (CFU/100mL)	PL	9920446	N/A	2025/05/01	Jessica (Ya Ping) Qiang
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9922362	2025/05/05	2025/05/06	Mitesh Raj
Polychlorinated Biphenyl in Water	GC/ECD	9923194	2025/05/06	2025/05/06	Debashis Saha
Phenols (4AAP)	TECH/PHEN	9923394	N/A	2025/05/06	Shivani Shivani
рН	AT	9920606	2025/05/01	2025/05/02	Nachiketa Gohil
Total PAHs: Barrie/Mississauga Sewer Use	CALC	9919766	N/A	2025/05/06	Automated Statchk
Total Suspended Solids	BAL	9922416	2025/05/05	2025/05/07	Madhav Somani
Volatile Organic Compounds in Water	GC/MS	9920930	N/A	2025/05/04	Narayan Ghimire

Bureau Veritas ID: AQKL28 Dup Sample ID: W-1 Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Residual Chlorine	SPEC	9920180	2025/05/01	2025/05/01	Gurparteek KAUR
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	9924502	N/A	2025/05/08	Georgeta Rusu
Volatile Organic Compounds in Water	GC/MS	9920930	N/A	2025/05/04	Narayan Ghimire

Bureau Veritas ID:	AQKL29	Collected:	2025/04/30
Sample ID:	C-1	Shipped:	
Matrix:	Water	Received:	2025/04/30

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Biochemical Oxygen Demand (BOD)	DO	9920065	2025/05/01	2025/05/06	Nusrat Naz
Total Residual Chlorine	SPEC	9920180	2025/05/01	2025/05/01	Gurparteek KAUR
Chromium (VI) in Water	IC	9921706	N/A	2025/05/03	Rupinder Sihota
Total Cyanide	SKAL/CN	9920351	2025/05/01	2025/05/01	Jency Sara Johnson
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	9924502	N/A	2025/05/08	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9922397	2025/05/05	2025/05/06	Mohammed Abdul Nafay Shoeb
Mercury in Water by CVAA	CV/AA	9923818	2025/05/07	2025/05/07	Maitri PATIL
Total Metals Analysis by ICPMS	ICP/MS	9923483	2025/05/06	2025/05/07	Thuy Linh Nguyen
E.coli, (CFU/100mL)	PL	9920446	N/A	2025/05/01	Jessica (Ya Ping) Qiang
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9922362	2025/05/05	2025/05/06	Mitesh Raj
Polychlorinated Biphenyl in Water	GC/ECD	9923194	2025/05/06	2025/05/06	Debashis Saha
Phenols (4AAP)	TECH/PHEN	9923394	N/A	2025/05/06	Shivani Shivani
рН	AT	9920606	2025/05/01	2025/05/02	Nachiketa Gohil
Total PAHs: Barrie/Mississauga Sewer Use	CALC	9919766	N/A	2025/05/06	Automated Statchk

Page 11 of 22

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Shipped: Received:	2025/04/30
Analyst	

Collected: 2025/04/30

TEST SUMMARY

Bureau Veritas ID: Sample ID:	AQKL29 C-1					Collected: Shipped:	2025/04/30
Matrix:	Water					Received:	2025/04/30
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Suspended Solids		BAL	9922416	2025/05/05	2025/05/07	Madhav So	omani
Volatile Organic Compou	nds in Water	GC/MS 9920930 N/A 2025/05/04 Narayan Ghimire				himire	
Bureau Veritas ID: Sample ID: Matrix:	AQKL29 Dup C-1 Water					Collected: Shipped: Received:	2025/04/30 2025/04/30
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Biochemical Oxygen Dem	nand (BOD)	DO	9920065	2025/05/01	2025/05/06	Nusrat Naz	
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	9922397	2025/05/05	2025/05/06	Mohamme	ed Abdul Nafay Shoeb
PAH Compounds in Wate	r by GC/MS (SIM)	GC/MS	9922362	2025/05/05	2025/05/06	Mitesh Rai	

GENERAL COMMENTS

Each te	emperature is the a	average of up to th	ee cooler temperatures taken at receipt
	Package 1	5.3°C	
	•		
Result	s relate only to the	e items tested.	

Page 13 of 22 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

Keystone Environmental Ontario Ltd. Client Project #: 20550 Sampler Initials: AA

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9920930	4-Bromofluorobenzene	2025/05/04	95 (5)	70 - 130	95	70 - 130	94	%				
9920930	D4-1,2-Dichloroethane	2025/05/04	108 (5)	70 - 130	111	70 - 130	118	%				
9920930	D8-Toluene	2025/05/04	104 (5)	70 - 130	104	70 - 130	102	%				
9922362	D10-Anthracene	2025/05/06	97	50 - 130	96	50 - 130	93	%				
9922362	D14-Terphenyl (FS)	2025/05/06	94	50 - 130	95	50 - 130	91	%				
9922362	D8-Acenaphthylene	2025/05/06	114	50 - 130	114	50 - 130	110	%				
9922397	o-Terphenyl	2025/05/06	98 (9)	60 - 140	100	60 - 140	96	%				
9923194	Decachlorobiphenyl	2025/05/06	97	60 - 130	98	60 - 130	101	%				
9924502	1,4-Difluorobenzene	2025/05/07	96 (10)	70 - 130	98	70 - 130	107	%				
9924502	4-Bromofluorobenzene	2025/05/07	100 (10)	70 - 130	97	70 - 130	101	%				
9924502	D10-o-Xylene	2025/05/07	100 (10)	70 - 130	113	70 - 130	102	%				
9924502	D4-1,2-Dichloroethane	2025/05/07	96 (10)	70 - 130	93	70 - 130	106	%				
9920065	Total BOD	2025/05/06					<2	mg/L	NC (1)	30	93	80 - 120
9920180	Total Chlorine	2025/05/01	97 (2)	85 - 115	101	85 - 115	<0.1	mg/L	NC (3)	25		
9920299	Total Cyanide (CN)	2025/05/01	92	80 - 120	102	80 - 120	<0.0050	mg/L	NC (4)	20		
9920351	Total Cyanide (CN)	2025/05/01	91	80 - 120	92	80 - 120	<0.0050	mg/L	NC (4)	20		
9920606	рН	2025/05/02			102	98 - 103			0.19 (4)	N/A		
9920930	1,1,1,2-Tetrachloroethane	2025/05/04	109 (5)	70 - 130	104	70 - 130	<0.50	ug/L	NC (6)	30		
9920930	1,1,2,2-Tetrachloroethane	2025/05/04	109 (5)	70 - 130	101	70 - 130	<0.40	ug/L	NC (6)	30		
9920930	1,2-Dichlorobenzene	2025/05/04	110 (5)	70 - 130	100	70 - 130	<0.40	ug/L	NC (6)	30		
9920930	1,4-Dichlorobenzene	2025/05/04	108 (5)	70 - 130	97	70 - 130	<0.40	ug/L	NC (6)	30		
9920930	Benzene	2025/05/04	96 (5)	70 - 130	94	70 - 130	<0.20	ug/L	NC (6)	30		
9920930	Ethylbenzene	2025/05/04	101 (5)	70 - 130	97	70 - 130	<0.20	ug/L	NC (6)	30		
9920930	Methylene Chloride(Dichloromethane)	2025/05/04	98 (5)	70 - 130	97	70 - 130	<2.0	ug/L	NC (6)	30		
9920930	o-Xylene	2025/05/04	104 (5)	70 - 130	99	70 - 130	<0.20	ug/L	NC (6)	30		
9920930	p+m-Xylene	2025/05/04	100 (5)	70 - 130	95	70 - 130	<0.20	ug/L	NC (6)	30		
9920930	Tetrachloroethylene	2025/05/04	89 (5)	70 - 130	85	70 - 130	<0.20	ug/L	NC (6)	30		
9920930	Toluene	2025/05/04	101 (5)	70 - 130	98	70 - 130	<0.20	ug/L	NC (6)	30		
9920930	Total Xylenes	2025/05/04					<0.20	ug/L	NC (6)	30		
9920930	Trichloroethylene	2025/05/04	94 (5)	70 - 130	92	70 - 130	<0.20	ug/L	NC (6)	30		
9921706	Chromium (VI)	2025/05/03	99	80 - 120	103	80 - 120	<0.50	ug/L	NC (4)	20		

Page 14 of 22

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

Keystone Environmental Ontario Ltd. Client Project #: 20550 Sampler Initials: AA

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9922133	Mercury (Hg)	2025/05/05	89	75 - 125	98	80 - 120	<0.00010	mg/L	NC (4)	20		
9922362	1-Methylnaphthalene	2025/05/06	128	50 - 130	129	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	2-Methylnaphthalene	2025/05/06	128	50 - 130	130 (7)	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Acenaphthene	2025/05/06	107	50 - 130	109	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Acenaphthylene	2025/05/06	109	50 - 130	111	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Anthracene	2025/05/06	109	50 - 130	109	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Benzo(a)anthracene	2025/05/06	111	50 - 130	112	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Benzo(a)pyrene	2025/05/06	107	50 - 130	109	50 - 130	<0.0090	ug/L	NC (8)	30		
9922362	Benzo(b)fluoranthene	2025/05/06	109	50 - 130	112	50 - 130	<0.030	ug/L	NC (8)	30		
9922362	Benzo(g,h,i)perylene	2025/05/06	105	50 - 130	108	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Benzo(k)fluoranthene	2025/05/06	106	50 - 130	107	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Chrysene	2025/05/06	106	50 - 130	108	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Dibenzo(a,h)anthracene	2025/05/06	107	50 - 130	109	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Fluoranthene	2025/05/06	111	50 - 130	111	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Fluorene	2025/05/06	109	50 - 130	110	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Indeno(1,2,3-cd)pyrene	2025/05/06	106	50 - 130	109	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Naphthalene	2025/05/06	108	50 - 130	110	50 - 130	<0.050	ug/L	NC (8)	30		
9922362	Phenanthrene	2025/05/06	108	50 - 130	108	50 - 130	<0.030	ug/L	NC (8)	30		
9922362	Pyrene	2025/05/06	109	50 - 130	110	50 - 130	<0.050	ug/L	NC (8)	30		
9922397	F2 (C10-C16 Hydrocarbons)	2025/05/06	92 (9)	60 - 140	96	60 - 140	<90	ug/L	NC (8)	30		
9922397	F3 (C16-C34 Hydrocarbons)	2025/05/06	96 (9)	60 - 140	103	60 - 140	<200	ug/L	NC (8)	30		
9922397	F4 (C34-C50 Hydrocarbons)	2025/05/06	88 (9)	60 - 140	95	60 - 140	<200	ug/L	NC (8)	30		
9922416	Total Suspended Solids	2025/05/07			98	80 - 120	<10	mg/L				
9923194	Total PCB	2025/05/06	91	60 - 130	85	60 - 130	<0.05	ug/L	NC (4)	40		
9923394	Phenols-4AAP	2025/05/06	101	80 - 120	99	80 - 120	<0.0010	mg/L	NC (4)	20		
9923483	Total Aluminum (Al)	2025/05/07	102	80 - 120	96	80 - 120	<4.9	ug/L	NC (4)	20		
9923483	Total Arsenic (As)	2025/05/07	103	80 - 120	97	80 - 120	<1.0	ug/L	7.2 (4)	20		
9923483	Total Cadmium (Cd)	2025/05/07	99	80 - 120	95	80 - 120	<0.090	ug/L	NC (4)	20		
9923483	Total Chromium (Cr)	2025/05/07	102	80 - 120	99	80 - 120	<5.0	ug/L	8.1 (4)	20		
9923483	Total Copper (Cu)	2025/05/07	105	80 - 120	99	80 - 120	<0.90	ug/L	10 (4)	20		
9923483	Total Lead (Pb)	2025/05/07	97	80 - 120	97	80 - 120	<0.50	ug/L	NC (4)	20		

Page 15 of 22

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

Keystone Environmental Ontario Ltd. Client Project #: 20550 Sampler Initials: AA

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD		ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9923483	Total Manganese (Mn)	2025/05/07	100	80 - 120	96	80 - 120	<2.0	ug/L	NC (4)	20		
9923483	Total Nickel (Ni)	2025/05/07	99	80 - 120	97	80 - 120	<1.0	ug/L	5.9 (4)	20		
9923483	Total Phosphorus (P)	2025/05/07	100	80 - 120	83	80 - 120	<100	ug/L	4.9 (4)	20		
9923483	Total Selenium (Se)	2025/05/07	101	80 - 120	101	80 - 120	<2.0	ug/L	NC (4)	20		
9923483	Total Silver (Ag)	2025/05/07	97	80 - 120	95	80 - 120	<0.090	ug/L	NC (4)	20		
9923483	Total Zinc (Zn)	2025/05/07	101	80 - 120	100	80 - 120	<5.0	ug/L	20 (4)	20		
9923818	Mercury (Hg)	2025/05/07	98	75 - 125	98	80 - 120	<0.00010	mg/L	NC (4)	20		
9924502	F1 (C6-C10) - BTEX	2025/05/08					<25	ug/L	NC (11)	30		

Page 16 of 22 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

Keystone Environmental Ontario Ltd. Client Project #: 20550 Sampler Initials: AA

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Standard	
QC Batch	Parameter	Date	% Recovery QC Limi		% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9924502	F1 (C6-C10)	2025/05/08	102 (10)	60 - 140	112	60 - 140	<25	ug/L	NC (11)	30		
N/A = Not Applicable												
Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.												
Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.												
QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.												
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.												
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.												
Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.												
NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).												
(1) Duplicate Parent ID [AQKL29-07]												
(2) Matrix Spike Parent ID [AQKL28-15]												
(3) Duplicate	Parent ID [AQKL28-15]											
(4) Duplicate	Parent ID											
(5) Matrix Spike Parent ID [AQKL28-13]												
(6) Duplicate Parent ID [AQKL28-13]												
(7) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.												
(8) Duplicate Parent ID [AQKL29-04]												
(9) Matrix Spike Parent ID [AQKL28-04]												
(10) Matrix Spike Parent ID [AQKL28-14]												
(11) Duplicate Parent ID [AQKL28-14]												

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Tizhou Hun

Yizhou Han, Analyst 1

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

C548490																				
2025/04/30 18:18																				Page (of)
BUREAU VERITAS	Burea 6740	u Veritas Campobello Road	l, Mississauga, Ontario	Canada L5N 2	L8 Tel:(905) 817-	5700 Toll-free:800-	563-6266 Fax:(905) 817-5	5777 www	.bvna.com						_ [.			
	INVOICE	то: 🚽 🔓 🛋	ar the factories of	- Andrew -		REPO	RT TO:						PROJEC	TINFORM	MATION:	5	短机	21	NONT-2025-04-6804	<u>y:</u>
Company Name: #38289	Keystone Env	vironmental O	ntario Ltd.	Company	/ Name:						Quotation	#:	C4609	93		— ľ		Ч.		Bottle Order #:
Attention: Accounts	s Payable	a Road		Attention	Jeff IV	luir					P.O. #:		20550				anna ai 1997 - a	"A" Bes		
Address: 700-07 Mississa	uga ON L5N 6	J5	1	Address:	-						Project:	imo:							COC #:	Project Manager:
(604) 43	0-0671	Fax:		Tel:			Fax:				Site #:	ine.								K 1 1 5 1
Email: accounts	payable@key	stoneenviron	mental.ca; dshar	da Email:	jmuir(Dkeystoneenvi	ronmental.ca	a			Sampled B	By:	Alus	non	Agayal	waran (-		C#1043796-01-01	Kudrat Bajwa
MOE REGULATED I SUBMITT	DRINKING WAT	TER OR WATE	R INTENDED FO	R HUMAN C ATER CHAIN	ONSUMPTION OF CUSTOD	N MUST BE	:(1		ģ	ANA	ALYSIS REC	QUESTED	O (PLEASE B	E SPECIF			Bog	ular (Str	Turnaround Time (TAT) R Please provide advance notice fo	equired: r rush projects
Regulation 153 (2011)		Other Regulations		Special	Instructions	L circle	4	aw (2								(will b	be applied	if Rush TAT is not specified):	X
Table 1 Res/Park	Medium/Fine	CCME	Sanitary Sewer B	law			ase o	/F1-F	er Byl								Stand	dard TAT =	5-7 Working days for most tests	
Table 2 Ind/Comm	Coarse	Reg 558.	Storm Sewer Byla	w			(plea	TEX	Sew								Pleas days	se note: Sta - contact y	andard TAT for certain tests such as B our Project Manager for details.	OD and Dioxins/Furans are > 5
Table		PWQO	Reg 406 Table				ered Is / F	ICs, E	storm								Job	Specific I	Rush TAT (if applies to entire subn	nission)
_		Other Mis	sissonga Shorn	1 Sawer Bylo	e and a start a		Filte	53 PF	nga S								Date	Required:	Tin	ne Required:
Includ	le Criteria on C	ertificate of An	alysis (Y/N)?		1		Field	eg 15	sissal 2)								Rush	Contirmat	(c	all lab for #)
Sample Barcode La	bel S	ample (Location) I	Identification	Date Sampled	Time Sampled	Matrix		0	Mis 202								to #	Bottles	Comm	ents
1		W-)	j	fpn130	3:00	nater	×	×	\times							î.	1	8		
2		C-1	а. н.	Ý	4:30	valorter.	×	X	\times								1	8	5 20	9
3							2 2													
4																				
5				10																
6																				
7																				
8																				
9							10, 27							-					E.	
10																				
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD)		I/DD) T	Time RECEIVED BY: (Signature/Print) Date: (1					Date: (YY/I	MM/DD) Time # jars used and not submitted						Laboratory Use Only					
Alashay Ag	ay orlumon	(April 30	2025- B:	<u>30pro <</u>	\sim	m-			-ONS	[ורטי.	3	(n)	4		Time Sensi	tive Te		e (°C) on Recei Custody Si Present Intact	eal Yes No
* UNLESS OTHERWISE AGREE ACKNOWLEDGMENT AND AC * IT IS THE RESPONSIBILITY C ** SAMPLE CONTAINER, PRES	ED TO IN WRITING, CEPTANCE OF OUF OF THE RELINQUIS SERVATION, HOLD	WORK SUBMITTE R TERMS WHICH A HER TO ENSURE TIME AND PACKA	ED ON THIS CHAIN OF ARE AVAILABLE FOR Y THE ACCURACY OF T AGE INFORMATION C/	CUSTODY IS SU VIEWING AT WW HE CHAIN OF CI	UBJECT TO BURE W.BVNA.COM/EN USTODY RECORE	AU VERITAS'S STAI VIRONMENTAL-LAB D. AN INCOMPLETE DM/ENVIRONMENTA	IDARD TERMS / ORATORIES/RE CHAIN OF CUST L-LABORATOR	AND COND SOURCES ODY MAY	ITIONS. S /COC-TER RESULT I JRCES/CH	SIGNING OF T RMS-AND-CO N ANALYTIC HAIN-CUSTOR	THIS CHAIN NDITIONS. AL TAT DEL DY-FORMS-	LAYS.	ODY DOCUM	IENT IS	SAMPLES	MUST BE KEF UNTIL DI	PT COOL (< ELIVERY TO	10° C) FF BUREAU	White: I ROM TIME OF SAMPLING VERITAS	Bureau Veritas Yellow: Clier

Keystone Environmental Ontario Ltd. Client Project #: 20550 Client ID: W-1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Keystone Environmental Ontario Ltd. Client Project #: 20550 Client ID: C-1 Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C548490 Report Date: 2025/05/08 Bureau Veritas Sample: AQKL29 Lab-Dup Keystone Environmental Ontario Ltd. Client Project #: 20550 Client ID: C-1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.